\qquad

4-6 Hands-On Lab
 Explore Cube Roots

Materials:

Smallest base 10 blocks, rainbow cubes, or centimeter cubes

Remember:

- All edges of a cube are the same length.
- Volume: the number of cubic units needed to fill the space of a solid.

The number of small unit blocks it takes to construct a cube is equal to the volume of the cube. By building a cube with edge length x and counting the number of unit blocks needed to build the cube, you can find x^{3}, the volume.

Activity 1

1. Build a cube with an edge length of 2. Draw the figure on the isometric dot paper. (2 pts)

2. The volume of the cube is the same as 2^{3}. What is 2^{3} ? (1 pt$)$

Activity 2

You can determine whether any number x is a perfect cube by trying to build a cube out of x unit blocks. If you can build a cube with the given number of blocks, then the number is a perfect cube. Its cube root ($\sqrt[3]{ }$) will be the length of one edge of the cube that is formed.
3. Try to build a cube using 27 unit blocks. Draw the figure on the isometric dot paper. (2 pts)
4. Is $\mathbf{2 7}$ a perfect cube? If so, what is its cube root? ($\mathbf{2}$ pts)

Answer the Following

Model the following. How many blocks do you need to model each? (4 pts)
5. 5^{3}
6. 3^{3}
7. 6^{3}
8. $\quad 1^{3}$
9. How can you find the value of a number squared from the model of that number cubed? (2 pts)
10. Is 100 a perfect cube? Why or why not? (2 pts)
11. A solid has a length of 3 , a height of 2 , and a width of 2 . What is the volume? Is it a perfect cube? Why or why not? (3 pts)

Model to find whether each is a perfect cube. If the number is a perfect cube, find its cube root. (6 pts)
12. 64
13. 75
14. 125
15. 200
16. Complete the table with the first ten perfect cubes. (10 pts)

x	1	2	3	4	5	6	7	8	9	10
x^{3}										

17. $\sqrt[3]{\mathbf{1 0 0}}$ is between which two integers? (1 pt)
