12-6: Graphing Inequalities in Two Variables Notes

Graphing One-Variable Linear Inequalities - OLD STUFF!

Inequality Symbols:

Check the following solutions for $x<6$:
$x=8$
$x=-4$
$x=0$
$x=6$
$x=25$

One variable means one \qquad but, while an equation means \qquad one solution, an inequality means more than one \qquad . Visually, a one-dimensional solution would be graphed on a \qquad .

The graphical solution for the example $\mathrm{x}<6$ is:
\qquad

Check the following solutions for $y \geq 3$:
$y=3$
$y=-4$
$y=-3$
$y=0$
$y=-25$

The graphical solution for the example $y \geq 3$ is:

Graphing Two-Variable Linear Inequalities - NEW STUFF!

Check the following solutions for the 2-variable inequality y $>x+4$ (note how the solutions look different):
(2, -9)
$(-3,1)$
$(0,2)$
(-1, 3)

Visually, a two-dimensional solution would be graphed on a " \qquad ,"
which we call a \qquad with an x-axis and a y-axis. Inequality Symbols:
\square

The graphical solution for the example $y>x+4$ is:

Shading Check:

The graphical solution for the example $y \leq 3 x$ is:

Shading Check:

The graphical solution for the example $y \geq 1 / 2 x-2$ is:

Shading Check:

The graphical solution for the example $\mathrm{y}<3 / 4 \mathrm{x}-1$ is:

Shading Check:

